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(therefore 90% D). If we assume, reasonably, that the d2 

and di species contain one of their deuteriums at C-3, the 
total at C-3 should be 91% D (i.e., 86 + 4 + 1), which 
agrees closely with the nmr integration.15 

The ready bridgehead exchange in brendan-2-one is not 
paralleled in its bicyclic analog, bicyclo[3.2.1]octan-2-one 
(8), in which the ketonic ring is conformationally more 
flexible. Thus ketone 8 exchanged virtually only its two eno-
lizable protons (3% d0, 24% d\, 72% d2, 1% di), when 
treated with NaOCH 3 under the conditions of run 3, Table 
I. Use of KO-?-Bu-/-BuOD at 40° gave closely similar in­
corporation, and, even at 170° with KOD in 1:1 D^O-diox-
ane, the recovered ketone showed very little uptake beyond 
di (0% do, 10% du 87% d2, 2% d3, 1% d4).

]6 

The unusual ease of bridgehead replacement in 3 and its 
relative difficulty in 7 and 8 demonstrate that the bridged 
boat form markedly enhances enolate stability at the side of 
the boat (but not at the bow) and that this stabilization is 
diminished considerably in a locked chair form. Our results 
imply that boat-locked substrates might be used to advan­
tage in pursuit of certain anti-Bredt olefins.17 The findings 
also raise the interesting possibility that prior to enolization 
of equatorial hydrogens, ordinary cyclohexanones may pre­
fer to change to boat-like shapes to improve initial stereoe-
lectronic alignment. We are pursuing some of these sug­
gested lines. 
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Trapping of Intermediates in Singlet Oxygen 
Reactions. Cleavage of Dioxetanes by 
Diphenyl Sulfide 

Sir: 

Recent investigations on the mechanisms of singlet oxy­
gen reactions with acceptors have made use of various trap­
ping agents to intercept peroxidic intermediates.1 '4 Among 
these, diphenyl sulfide (a species unreactive toward '02) 
has been used effectively to bring about monodeoxygena-
tion of persulfoxides formed in the sensitized photooxida-
tion of alkyl sulfides.1 We now report that diphenyl sulfide 
(DPS) may be used as a trapping agent to intercept dioxe­
tanes formed in the reactions of singlet oxygen with certain 
electron-rich ethylenic and heterocyclic systems. 

Methylene Blue-sensitized photooxidation of m-d i -
methoxystilbene (1) (625-W Sylvania "Sun Gun") (0.005 
M) in ether-methanol (85:15) in the presence of excess 
DPS (0.02 M) yielded methyl benzoate (32%) benzil di­
methyl ketal (2)5 (18%), and diphenyl sulfoxide (35%).6 In 
the absence of DPS, we have found as has been reported 
earlier,7'9 that reaction of 1 with singlet oxygen under the 
same conditions yields only the dioxetane (3) and its cleav­
age product, methyl benzoate. 

We suggest that the formation of the rearrangement 
product (2), in the presence of DPS, takes place by a nu-
cleophilic attack of the sulfide on the intermediate dioxe­
tane (3) with cleavage of the oxygen-oxygen bond.8 The 
zwitterion (4) thus formed then undergoes a benzylic acid­
like rearrangement as shown.10-" This explanation receives 
strong support from a control experiment in which the diox­
etane (3), isolated in pure form,9 was treated with DPS at 
room temperature in ether-CD30D. The resulting mixture 
of products contained 2 (21%), diphenyl sulfoxide (32%), 
and methyl benzoate (43%). No incorporation of OCD3 

from the solvent was observed. In benzene, 3 reacted at a 
much slower rate with DPS to give the same products. 

Ph Ph Ph Ph 
'O5 \ / DPS X X 

MeO OMe 

Ph Y ^ 1 Ph 
MeO OMe MeOO-OOMe /"n Vn—SPh 

1 3 U 
0 Vo 

2PhCOOMe I 
PhCO-C / 

OMe 

"OMe 
2 Ph 

+ 

Ph 2 S-O 

The effect of DPS on the photosensitized oxygenation of 
2,3-diphenyl-p-dioxene (5) was next investigated. In the ab­
sence of trapping agent, this oxidation yields the 1,2-dioxe-
tane (6) which cleaves to form the dibenzoate of ethylene 
glycol (7).7 '12 Photooxidation of 5 (0.02 M) in moist metha­
nol (Methylene Blue) in the presence of DPS (0.16 M) 
yielded the trans-g\yco\ 8 1 3 J 4 (40%) and diphenyl sulfoxide 
(47%) along with the cleavage product 7 (18%). As the con­
centration of DPS was increased the ratio of 7 to 8 marked­
ly decreased, as shown in Table I.26 Using benzene as sol­
vent, bisacenaphthalenethiophene as sensitizer, and DPS 
(0.05 M) as oxygen scavenger, the products formed were 
benzil ethylene ketal (9) (8%), epoxide (10) (19%), 7 
(24%), and diphenyl sulfoxide (39%). Formation of prod­
ucts 8, 9, and 10 is shown in Scheme I.14-27 

Diphenyl sulfide does not cause monodeoxygenation of 
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Scheme I 
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Table I. Variation of the Product Ratio (7:8) with 
Concentration of Diphenyl Sulfide (DPS) 

S(M) DPS (M) Ratio of 7:8-

0.01 
0.01 
0.01 

0.04 
0.08 
0.10 

1.20 
0.65 
0.52 

0 Determined by nmr analysis of the reaction mixture. 

intermediates in the dye-sensitized photooxidation of tetra-
phenylcyclopentadienone, 2,5-diphenyl-4-methyloxazole, 
9,10-diphenylanthracene, 2,3-dimethylthiophene, or 2-
methylfuran, where the products formed are virtually the 
same with or without DPS, and no diphenyl sulfoxide is ob­
served. These findings are consistent with the fact that diox-
etanes have not been found to be intermediates in any of the 
above singlet oxygen reactions which are generally consid­
ered1"1 to involve 1,4-transannular peroxides. We have inde­
pendently found that DPS is inert to 9,10-diphenylanthra­
cene peroxide, ascaridole, and 1,4-dimethylnaphthalene 
1,4-endoperoxide16 among other 1,4-transannular perox­
ides. We have also observed that dye-sensitized photooxida­
tion of tetramethylethylene in the presence of a 4 M excess 
of DPS gave only allylic hydroperoxide, the typical "ene" 
product, and no diphenyl sulfoxide. 

On the other hand, the presence of DPS has a marked ef­
fect on the oxidations of the tetrasubstituted imidazoles 11a 
and l i b which normally undergo facile C4-C5 ring cleavage 
with singlet oxygen through intermediates generally consid­
ered to be dioxetanes.I7~19 Thus, photooxidation of tetra-
phenylimidazole (Ha) in benzene-acetone (9:1) (Methy­
lene Blue) yielded the rearrangement product (14) (33%) 
and diphenyl sulfoxide (41%) in addition to the usual cleav-

PhCC 

PhCO,. 

Ph. 

Ph 
/v 

R 
11 

-Ph 

Ph 
"N" 

R 
13 

-Ph 

Ph DPS 
R 
12 oX^P h 

R 
14 

a, R = Ph 
b, R = CH2Ph 

age product (13) (12%). In the absence of DPS the diben-
zoyl derivative (13) was obtained in nearly quantitative 
yield, as reported earlier.17 Similar results were observed in 
the photooxidation of l ib . As in the cases cited above, reac­
tion of DPS with the intermediate dioxetanes (12) would 
lead to the observed rearrangement. 

Along with certain dioxetanes20 and persuifoxides, it ap­
pears that carbonyl oxides, postulated as intermediates in 
singlet oxygen reactions,23~25 may also undergo DPS mono-
deoxygenation. Thus, we have found that the dye-sensitized 
photooxidation of diphenyldiazomethane in the presence of 
DPS yields only benzophenone and diphenyl sulfoxide and 
none of the (dimeric) tetroxide normally observed. 
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